Ain Shams University, Engineering Bulletim
Vol. 27 No. 2, Juni 1992 Page 323-338

A NOVEL INTEGRAL EQUATION APPROACH FOR WAVE
PROPAGATION IN INHOMOGENEOUS DIELECTRIC SLABS

LOTFI RABEH GOMAA

Faculty of engineering of Shobra, Electrical Engineering

Department, Zagazig university, Banha branch - Egypﬁ

Abstract

I derive an integral eguation using Abel's method to solve the
Helmholtz equation in a one-dimensional inhomogeneous dielectric slab.
The kernel of the integral egquation is separable and is of a
non-convolution type. A simple direct iterative technique to solve that
equation is presented. The reflection and transmission coefficients of
some previously studied profiles are considered. A comparison between
the results of this férmulation and those of two other methods shows

good agreement;

I-Introduction

Wave propagation in one-dimensional inhomogeneous dielectric slab
is important for many practical reasons. The old problem of ionospheric

propagation has long been a subject of studytl]- The transmission and

reflection properties of plasma sheaths'?, stratified mediala"‘4’,

and the layered troposphereISJhave been studied extensively. Several

methods have been developed for analyzing wave propagation in

: g . te1-114) )
one-dimensional inhomogeneous media . Only a few refractive

£11,(33[4]

index profiles yield closed-form analytic solutions For

other profiles, only approximate methods of solution are possible:

these include the WKB method [dﬂ profile discretizationt". Hill's

functionl7’, Riccati's differential equation:a‘. Chandrasekhar

transformationtp]. Bremmer series“at finite element method““,a
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integral equations‘lzhum and perturbation techniquetl*l.

The integral equation formulation is one of the most powerful
methods for studying wave propagation in inhomogeneous slabs, but the

numerical techniques that can be used to solve these integral equations

are very limited. Wang''®' and Hassab''?' derived two integral
equations but, as pointed out by Chentizj, their equations are not
appropriate for numerical computations. Chen'*?’ wused the Green's

function and the induced current concept to derive an integral equation
for the field in the inhomogeneous slab. Then, to solve his equation
numerically, he used a quadratic zoning function as an approximation to
the field inside the slab; this transforms the integral equation into a
system of algebraic egquations which can be solved by matrix

manipulations.

To the author's knowledge, there does not exist any published
integral equation formulation appropriate for “"direct" numerical
computations (i.e., in which the integral equation is not converted to
any other type of equation). In this paper we present a formulation of
the problem based on Abel's method“5], sc that the resulting integral
equation is solvable directly using a simple iterative technique. Our
numerical results are compared with those obtained by two other

methods: Chen's integral equation formulation''?’, and the finite

element method **’.

II- Formulation of the integral equation

Consider a one-dimensicnal lossless inhomogeneous dielectric slab
which occupies the space 0=x<a. The spaces x<0 and x>a are filled with
two lossless homogeneous dielectric media whose relative permittivities

are € and £, respectively as shown in figure 1.
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Assume a linearly polarized plane wave ¥ exp(jka) to be incident
normally onto the slab from the left side (where ? is a unit vector
in the y-direction and kt is the wavenumber in the space x <0).

The time dependence exp(-jwt) is assumed. The reflected and transmitted
fields in the spaces x<0 and x>a can be obtained if the reflection and

transmission coefficients R and T are known. These coefficients can be
calculated if the electric field E=?¢(x) in the inhomogeneous slab is
known. In the space .x<0. . the field ¢Sx) satisfies the Helmholtz

equation:

where kois the free space wavenumber.

The solution of (1)-in the region x<0 is simply :1:::

?(x) = exp(jk x) + Rexp(-JK X) =mmeommmmee (2)

where R denotes the reflection coefficient.

Similarly, the field ¢Jx) in the region x>a can be written as "'2’.
#(x) =T exp[jkgx—a?] PEER e e e e e e e e (3)

where ktis the wavenumber in the space x>a and T is the transmission

coefficient. The field @(x) in the inhomogeneous slab satisfies the

differential equation‘la’:
2
 Fogl L 37T O S L F e (4)

Let us write the relative permittivity distribution £€(x) as the sum of
two parts:

E(X) = & = 6€(X) =mmmmommmm e 5)

One of these parts eﬂis a constant and the other:part $£(x) can be

5 y L1413
considered as a continuous perturbation' **’on €,- The constant part €

can be taken, for example, as the average value of £(x), i.e.:
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‘a
i = al}e:(x)dx

a "
o
Accordingly, (4) can be written as the inhomogeneous differential
aguation:

4% 4 ke #(x) = K2E&(X)B(X) ==mmmmmmmmmmmmmmmmmmmmmmemeeee (6)

shich can be solved using Abel's method“51. The solution of (6) can be

sxpressed in terms of the solutions of the corresponding homogeneous

:quation:

P M o LK) = O emmesmmmtons i e == (7)

P

‘t is worthwhile to note that (7) means that the original problem is
-educed to a homogeneous slab sandwiched between two homogeneous
iielectrics sLand sloccupying the spaces x<0 and x>a respectively, i.e.

-he relative permittivity profile in the space -w<x<w is:

)
1

£ for x<0
£ = { e for 0=x=a - ——=—=(8)
£ for x>a =

L

“he solution of (7) in 0sx=a when a unit amplitude plane wave is

ncident from x<0 is elementary"d’:
SIS AR e S i e S o e (9)
‘here:
#Lx)= B emplik X) Seessmmsmesmasaasam oo s (10)
:nd dfay= B Qap(~JK R] —=S-stitisoparnniatn e e (11)

‘here k  is the wavenumber in 0sx<a for the profile defined by equation
8). The constants E and E are primitive and can be found by matching

-he tangential components of the field at the interfaces x=0 and x=a,
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they are given by:

2( 1+nm)

[(1+n_)(1l+n )] + [(l—nm)(l-nlq)- exp(2jk a)]

E =14+vY-g N e — (11b)

where:
e ((14n _)(1-n_)] + Lon, Wi, Ietpt2 i | | - e

[(1+QMJ(1+Wﬂ)] v [(l—qﬂ)(lqka)-exp(ij“a)]

and n.= n-n, n = n/n, where Ry and n are the refractive
at a L ta j 3 a L a 13

indecies of the three regions x<0, 0< x <a and Xx>a respectively. Using
Abel's methodtzs}, we can write the general solution of (6) for the

field #(x) in the inhomogeneous slab as follows:
X

P(x)= A‘:&;x) + qux) + %IG{X,E) k: Sl ) P(F) Af ————mmmte (12)

k=]

where A and B are constants to be determined from the boundary

conditions and the kernel G(x,f) is given bytls]:

n

G(x,%) B(L) @fX) = B(X) BLE) —mmmmmmmmooioo (13)

The constant W is the wronskian:

; : .
W=2o22-¢¢ =21k YE EE ~—--cmmmmmem e (14)
where the primes denote differentiation with respect to x. The four
unknowns A, B, R and T in the equations (2), (3) and (12) are found
from the continuity of ¢(x) and its derivative at the boundaries x=0

and x=a. At x=0, the boundary conditions are:

L +R =A¢(0) + B @0) =——==mmmmmom oo (15)
jk = 3K R = A 2(0) + B @f0) =mmmmommme (16)



1ve continuity of #(x) and its derivative at x=a gives:

Agfa) + Brf{a) + #{a)l - U R e (17)
Ap(a) + Bofa) + ofa)l, - *"!a”fi““ B $ 80
a
ere 1= 3 [ o) KB SIEMENS = —-o- o mmmmmomee (19)
o]
a
ad =i I OTRE v e (20)
o

f course, #(f) in (19) and (20) is yet unknown since it is the field

1 the inhomogeneous slab. We propose the following iterative
achnique to solve the equations (15)-(18) for the four unknowns A, B,
and T :

1- As a first iteration we put #(f) in (19) and (20) equal to
15)+¢4E), to calculate the two integrals Itand I,- Then we solve the
our equations (15)-(18) for the four unknowns A, B, R and T. Let A_,
L Roand Tabe their values for this first iteration. Using the values
Dand Bowe calculate the first iteration ¢fx) for the field ¢#(x) from
he egquation (12) using the substitution &(f) = ¢if)+¢£§) in the

ntegral in the right hand side of equation (12).

2- Substitute ¢ft) for #(f) in the integrals I and I,, then
olve (15)-(18) to obtain four new values Ai, Bi. R‘and Tl for the
our unknowns A, B, R and T. Using Ai, Bland ¢fﬁ) we calculate the
;econd iteration ¢tfx) for the field #(x) ffom equation (12).

This procedure can be continued until convergence to the final
-alues for A, B, R and T is reached. Usually only a few iterations are
sufficient for convergence. The correctness of the results are checked
‘rom the condition for energy conservation:

/2= 72 IRI* L e s T (21)



The terms VEL ,VE.LIRI2 and V?LIle are proportional to the powers
associated with the incident, reflected and transmitted waves

respectively.

III- Numerical Applications

To test the validity of our method, we considered a linear

permittivity profile:

£(x) = s + (g - € )(x/a) r DERSG ——mmim o e e i e i (22)

This profile was studied previously by Chen(’z' using an integral
equation formulation. It is also amenable to analytical treatment:
the solution can be expressed in terms of Airy functions' . The
amplitudes of the reflection and transmission ccefficients |R| and |T|
are calculated functions of the profile height £, when £L=1 and the
ratio X=(a/k°)=1 (where Rois the free space wavelength chosen equal to
lum.). Figure 2 shows the results of our method (continuous curve) and

Chen's resultsHzl (broken curve). A slight discrepancy between the

two results occurs when the profile's height clincreases.

As a second test, we considered a linear. profile with £t=1 and
£ =5, and the following sinusoidal profile:

=(x) =€ [ 1+ e (h-1)sin(nx/a)] =  -==-=----------oo- (23)

Both of these profiles, the linear and the sinusoidal, were
studied previously by Chen and Lien™" using the finite element
method. Figures 3 and 4 show the variations of |R| and |T| as functions
of the ratio x=a/k°(the normalized slab thickness), where k°=1um. The
results of our method (continuous curves) are almost identical to those

-

obtained by the finite element method (broken curves).
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V-Discussions

Chen and Lien'*"’ stated that Chen's integral equation

*? has the disadvantage of déaling with a full matrix

‘ormulation[‘
‘roblem (which is usually associated with a relatively large error,
.specially when large profile variations are to be considered). This is
‘hy they developed the finite element method to keep the errér small.
lthough [11] was published after [12], we do not know why Chen and
ien did not make a comparative study between the finite element
ethodtli] and the integral equation formulation developed by Chéhta]

comparative study lbetween our integral egpation and the finite
lement method is presented in this paper.

From figures 2, 3 and 4 we conclude that the agreement between our
tethod and the finite element method is better than that.between our
iethod and Chen'§‘z’ integral equation formulation.This led us to

t12)

hink that our formulation is better than Chen's one because, as

sointed out in 1¢{], the finite element method is more accurate than

r
.

.

oy

‘hen's integral ecguiation formulation' *%’

. An important advantage of our
‘ormulation is 'fﬁht"éhe kernel of the integral equation is of the
on-convolution zvpe, this greatly simplifies the numerical integration

o be calcula*ed in equation (12). Chen et. al'*™™ have pointed out

-l

~hat when the%?ﬁnité difference method is used to treat such a problem
-he results-a:e ~ary poor and not accurate and that is why they have
:aveloped the finite element method.
’ 3

- Conclusions .

An integral! equation formulation is presented for the problem of
‘ave propagation in an inhomogeneous dielectric slab. We applied a
simple iterati;a technique to solve that equation numerically. To test

ur  megpod,’ three previously studied permittivity profiles weTe
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considered. The results of our method agree with those of another
integral equation formulation as shown inl‘figure 2, 'but ‘better
agreement is achieved with the finite element method. The ability to
deal with large profile variations was demonstrated when we considered
steep linear and sinusoidal profiles. The results obtained by our
method and the most accurate one (the finite element method) are almost

identical as shown in figqures 3 and 4.
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“igure 1 -

“igure 2 -

“igure 3 -

“igure 4-

,Figure Captions

A plane wave incident on an inhomogeneous dielectric slab
occupying the space 0=x=a, and bounded by two homogeneous

media having relative permittivities =. and =

Amplitude of transmission and reflection coefficients |T|
and lR| as function of profile height £ when a=ko;1ym..st=l
Amplitude of the reflection coefficients |R]

as function of the normalized slab thickness x=a/ko

when £L=sl=1 and h=5. The letters S and L are for sinusoidal

and linear profile respectively.

Amplitude of the transmission coefficients 171
as function of the normalized slab thickness x:a/ko
when 5L=£l=1 and h=5. The letters S and L are for sinusoidal

and linear profile respectively.
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